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Abstract

-DREPk has, at present, two libraries containing subroutines for calculating splines:
IMSL and BSPLIN. A new library has been developed to supplement the IMSL and BSPLIN
routines in the realm of smoothing splines. It is not self-contained, making frequent use
of subroutines from the BSPLIN library.

The new subroutines offer several advantages over the smoothing spline

subroutines in the IMSL and BSPLIN libraries,

1) The order of the spline may be picked by the useri

2) The second derivative of the spline is not constrained to be zero at Its
end-points"

3) The user of the new subroutines has freedom to choose the number and
positions of the knots of the spline' a -

4) The new subroutines have, as input, an extra set of weights, 81, 1=1,N,
which control the stiffness of the spline between each pair of knots.

The new subroutines were initially developed for use In ship hull approximation for
the calculation of boundary layer growth on the hull. For this calculation one needs
splines whose second derivatives are very well behaved. The additional control afforded
by the new subroutines makes them far more suitable for this application than any of the
subroutines currently available in either the IMSL or BSPLIN libraries.

-,%
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RiSUM6

L'ERDA posside maintenant deux biblioth6ques contentant des
sous-prograwnes pour calculer des splines :IMSL et BSPLIN. Une nouvelle
biblioth~que a 6t mise sur pied pour compl6ter les prograimnes ISMUL et
BSPLIN dans le domaine des splines de lissage. Elle nWest pas autonome,
faisant souvent appel a des sous-progranmes de l~a biblioth~que BSPLIN.

Les nouveaux sous-prograiuies off rent plusieurs avantages par
rapport aux sous-programmes de splines de lissage des biblioth&ques IMSL
et BSPLIN.

(1) LWutilisateur peut choisir le degr6 de l~a spline.

(2) La deuxi~me deriv6e de la spline nWest pas forc6ment nulle
ises points extr~mes.

(3) L'utilisateur des nouveaux sous-programmues peut choisir le
nombre et le lieu des noeuds de l~a spline.

(4) Les nouveaux sous-programmes acceptent en entr6e un
ensemble suppl6mentaire de coefficients de pondfiration 6.

iul, N, qui d6torminent l~a raideur de l~a spline entre deux
noeuds.

Les nouveaux sous-programues ont intialement 6t6 mis au point
pour l'approximation des coques do navire, notamment pour le. calcul de l~a
croisuance des couches limites our los coques. Pour ce dernier calcul,
ii faut utiliser des splines dont l~a deuxi~me d6riv~e at parfaitement
d6finio. Par le contr8leo accru qu'ils off rent, la nouveaux
sous-programmes conviennont beaucoup ajeux A cotta application quo tout
lot souu-programmes existants des biblioth~ques IMSL ou BSPLII.

iii
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NOTATION

Bn,k  - The nth B-spline of order k (Section 2.1)

D(m) - The mth divided difference operator (Section 3)

e n  - Error of the nth data point (Section 2.1)

f(x) - The spline function (Section 2.1)

F - The smoothing functional as used by Reinsch and de Boor (Section 2.1)

F=  - The smoothing functional as used In BSMTH (Section 2.1)

g(m) - See equation (3.9)

G - pX2 + (1-p)F (Section 2.1)

G - pX 2 + (1-p)F" (Section 2.1)

k - The order of the spline (Section 2.1)

m - The derivative of the spline function used as a smoothing criterion
(Section 2.1)

N - The number of B-splines used in the spline (Section 2.1)

Nk - The number of knots (Section 2.1)

NP - The number of data points (Section 2.1)

p - Parameter which balances the relative values of F and X2 (Section 2.1)

Phi - Value of p used In the iteration for p In BSMTH (Section 2.5)

P10  - Value of p used in the Iteration for p in BSMTH (Section 2.5)

Phi - The value of p after the nth Iteration for p in BSMTH (Section 2.5)

S - The value of the X2 input by the user (SectiOn 2.5)

an  - The arc length to the nth data point (Section 5)
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v, - See equation (2.10)

v~n - See equation (2.19)

W, - Error weights defined in equation (3.2)

x, - Abscissa of the nth data point (Section 2.1)

y 2  - See equation (2.11 )

yV2 - See equation (2.20)

Yn - Ordinate of the nth data point (Section 2.1)

Y'n - See equation (2.21)

a - Parameter which balances the relative values of F and X2 (Section 2.1)

On - The nth spline coefficient (Section 2.1 )

Oun - Approximation to On used for numerically stable determination of the X2 of a
spline (Section 2.4)

8n - The stiffness weight corresponding to the interval between the (n+k-1 )th and

the (n+k)th knot (Section 2.1)

6nS - The Kronecker delta (Section 3)

E, - The actual error of the nth data point (Section 3)

C" - See equation (3.3)

x 2  - The chi-square of the spline (Section 1)

x 2hi - The chi-square of the spline corresponding to the p-value Phi (Section 2.5)

x2o 0 - The chi-square of the spline corresponding to the p-value pi0 (Section 2.5)

X 2 - The chi-square of the spline corresponding to the p-value p. (Section 2.5)

vii



1 INTRODUCTION

DREA has, at present, two libraries containing subroutines for calculating splines:
BSPLIN' and IMSL 2. The library of subroutines presented here is intended to supplement
the previous two. It is not self-contained, making frequent use of BSPLIN subroutines.

The subroutines presented here were developed because the smoothing spline
routines available in IMSL and BSPLIN were found inadequate for smoothing data digitized
from offset diagrams of ship hulls. The spline representations of the hulls were to be
used in the calculation of hull boundary layer growth. For this application, it is necessary
to have a spline representation of the hull whose second derivatives are very well
behaved. The second derivatives of the hull representation cause accelerations in the
fluid flow around the hull which in turn cause changes in the boundary layer growth. It
was found that the spline subroutines in the IMSL and BSPLIN libraries could not be
controlled sufficiently well that the boundary layer calculations would be unaffected by
splining errors. In particular, the splines were unable to turn sharp corners (near the
bilge, for example) sufficiently rapidly without either cutting the corner or having
'wiggles' on each side of the corner. Either result induced large errors in the second
derivatives of the spline, the former underestimating the magnitudes of the second
derivatives, the latter overestimating them. It was therefore necessary to develop new
subroutines providing greater control over the splines and their derivatives.

The most fundamental subroutine in the new library is BSMTH. It is very similar in
function to the IMSL subroutine ICSSCU (this is an implementation of a program originally
written by Reinsch 3) and the BSPLIN subroutine SMOOTH: given the X2 of the spline curve
with respect to given data, a smooth spline approximating the data is determined by
minimizing a functional which measures the 'lack of smoothness' of the spline. BSMTH,
however, offers several advantages over the other two subroutines.

1) The order of the spline may be picked by the user. SMOOTH and ICSSCU
are cubic splines only.

2) SMOOTH and ICSSCU constrain the second derivative of the spline to be
zero at its end-points. BSMTH imposes no such constraint.

3) The user of BSMTH has freedom to choose the number and positions of the
knots of the spline. SMOOTH and ICSSCU require exactly one knot at each
data point. The freedom to choose the knots allows much greater control
of the spline.

When splining in two dimensions, control of the knots has additional
consequences. For efficient approximation of two-dimensional data, the
knots must form a rectangular lattice (see Reference 1, chapter 17, for
example). ICSSCU and SMOOTH then require the data points to be In a
rectangular lattice. With BSMTH this is no longer necessary.

4) BSMTH has, as input, an extra set of weights, 6, i=1,N, which control the
stiffness of the spline between each pair of knots. If the spline is
required to be flat in some region, then the appropriate 8, is Increased. If

the spline is to bend sharply in a different region, the appropriate 61 is
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= 1, if P is to be recalculated.

Via COMMON I PLIMS /

PMIN Minimum allowed value of p (See Section 2.5). Default is 1.OE-03

PMAX Maximum allowed value of p. Default is 1.OE+03.

Via COMMON /NODFLT/

IMAX 2*IMAX is the maximum number of divided differences allowed to
find the error in function PRERR (See Section A.4). Default value
is 5.

SMFACT: The value of the smoothing parameter used by BSMTH may be
adjusted by using a value of SMFACT not equal to 1. The smoothing

parameter used is, S = SMFACT*NPT*PRERR**2. The default value

is 1.

Via COMMON /INTEXP/

JDER : The value of JDER used by BSMTH. The integral of the square of

the JDERt h derivative of the spline is minimized (subject to the
constraint that XSQ = S). If smooth curves are desired a value of
JDER = 2 is appropriate. JDER should be non-negative and less than
K. The default value is 2.

DEFAULTS

If IER = 0 on input then
JDER= 2
SMFACT = 1.0
IMAX = 5
T() = (I-K)/(N-K+1), l=1,NKT i.e. knots are uniformly distributed in (0,1)

If IER = 1 on input, then the vales for JDER, SMFACT, IMAX and T(I) must be
input by the user via the COMMON blocks /NODFLT/ and /INTEXP/.

OUTPUT

IER = 0, Calculation has been successful

= 1, If JDER > K- 1

= 2, If NKTI ' N + K + max(OK-2*JDER)

= 3, If IWK < max(NKT 1,K**2)

= 4, If more than 30 Iterations are required to find the correct value
for p in BSMTH when splining the data point abscissae. Indicates
numerical difficulties in the solution of the linear system
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Appendix A

USER'S GUIDES

Concise guides for the use of the spline subroutines are now given. The
subroutines are listed alphabetically.

A.1 BSMCRV : User's Guide

SUBROUTINE BSMCRV(NPT,X,Y,E,N,KNKT1 ,T,WTI,BCOEFX,BCOEFY,R,IWK,WK,ARCL,G,IER)

PURPOSE: Given data points CX(l),YCI)), I=1,NPT BSMCRV finds a smooth curve

approximating them by splining the abscissae and ordinates separately with respect
to the arc-length along the spline. The arc length at each point is approximated
from the distances between the points. BSMTH is used to spline the abscissae and
the ordinates. The function PRERR is used to determine the smoothing parameter
and the subroutine WTIBEG is used to determine the stiffness weights.

LANGUAGE: FORTRAN

USACE: EXECUTE mainpgm,BSPLIN:HLLYSP/LIB,BSPLIN:BSPLIN/LIB

CALLS subroutines BSMTH, PRERR, WTIBEG

INPUT

NPT : The number of data points.

X An array of length NPT containing the data point abscissae in
ascending order.

Y An array of length NPT containing the data point ordinates.

E The errors of the data points. The smaller the error the closer the
spline will come to that point.

N : The number of B-splines used to represent the spline.

K : The order of the spline.

NKT1 N + K + max(O,K-2*JDER) (see below for a definition of JOER)

T : An array of length NKT1 the first N+K elements of which contain the

knot sequence (in ascending order). The remaining array elements
are used in subroutine SETUPP.

IER = 0, If JDER, T, WTI and the first N*K elements of R are as on the
previous call to BSMTH (this means that the matrix P need not be
recalculated).
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5 A PARAMETRIC SMOOTHING SPLINE

It is often desired to approximate data by a smooth curve which is not necessarily
a function. The spline approximation must be parametrized in some way. The choice of
the parametriztion is important (see Reference 1, pp.3 1 6). It has been shown that any
approximation of the arc length of the curve provides a good parametrization. It is
usually sufficient to approximate the arc length from the distance between data points.
The parametric spline is then calculated as follows.

1 ) Calculate the parameter s, at each data point by

Sn= sn-i * ((Yn - Yn-1) 2 + (Y, - Yn-1) 2)% (5.1)

2) Spline each of the data sets {(sn,xn),n=1,N} and {(sn,yn),n=1,N).

This is perfomed in the subroutine BSMCRV, which uses BSMTH to calculate each of the
two sub-splines. Hence, BSMCRV calculates a smooth, parametric spline. The smoothing
parameter for the calls to BSMTH is determined by the function PRERR and the stiffness
weights are determined by the subroutine WTIBEG. In addition, the arc-length is
normalized by the total length of the curve: that is, the parameter used is not the arc-
length but the fractional arc length along the curve. Thus the parameter s varies
between 0 and 1.

An example of a spline generated by BSMCRV is shown in Figure 11. Although the
data points show a large amount of scatter, an excellent, smooth curve has been found to
fit the data. Notice that the crossing of the curve over itself is of no consequence to
BSMCRV.

6 CONCLUDING REMARKS

The computer subroutines presented In this memorandum extend the available
libraries of spline subroutines at DREA. The versatility of BSMTH in comparison with the
BSPLIN subroutine SMOOTH and the IMSL subroutine ICSSCU , make it suitable for use with
a far greater variety of data sets. In particular, the ability to choose the spline order,
the ability to vary the spline knots independent of the data points, and the ability to
change the 'stiffness' of the spline at specific locations via the stiffness weights, 8n,

allow the user far greater control over the spline than Is possible with SMOOTH or
ICSSCU. Nor need the choice of inputs for BSMTH be overly difficult. The subroutines
PRERR, WTIBEG and NEWWTI allow the user to generate reasonable sets of default values
for the smoothing factor, S, and the stiffness weights, 8n, input to BSMTH. Finally, the
restriction that the data points be splined by a function is relaxed If one chooses to use
the subroutine BSMCRV. Thus, the subroutine library provides a smoothing spline which
provides, at once, both ease of use and great freedom and flexibility.
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4 DEFAULT VALUES FOR THE STIFFNESS WEIGHTS

As with the smoothing parameter, it is often not convenient for the user to input the
values for the stiffness weights, 8, n = 1,N-k+1, Two subroutines are provided which
calculate reasonable values for the parameters. The first subroutine, WTIBEG, uses the
data points to calculate the 8,. The second, NEWWTI, uses the spline coefficients of a

previously spline approximation of the data to calculate new values for 8.

Both subroutines use the same principle. Default values for the 8n are chosen by
setting 8, equal to a predicted value for

t"+l[ dmf(x)] 2

ftn

The contributions from each knot interval to the functional F" are then nearly equal and
the smoothing will not be dominated by one short segment of the curve.

In WTIBEG, It is assumed that m = 2. The second derivative of the spline in any knot
interval may then be approximated by the second partial difference between data points
near that knot interval. That is, if xj. 1 <( x xj+1 and tn ( x < t1+, then

f"(x) Xi.1 [yj4 l - yj yj - yjy1  (4.1)
xj+ I - xJ.1 LXj. -xj xj -xj. JI

NEWWTI uses a previous spline approximation of the data to approximate the

integral of -the mt spline derivatives in any knot Interval. The mth derivative of the spline
is calculated at each of the knots and the integral approximated from the linear
interpolation of these values. This yields the formula

ftl 1 [f(m)(x)]2dx - %(tkttrk-1)([f(M)(tn+k)]2 + f(m)(tn+k)f(m)(tn+k_) +

[f(m)(tf+k_,)]2) (4.2)

If the k s m+2, thls method is exact since the mth derivative of the spline is then linear
between the knots.

A demonstration of the ability of WTIBEG to choose appropriate choces for the
stiffness weights is shown by the comparison of the splines in Figures 1 and 2. As
explained in Section 2.6, the only effective difference in the calculations of these two
splines is the variation in the stiffness weights.
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If f is suitably smooth, then the first term on the right side of equation (3.8) remains
small as m increases, while the second term increases rapidly. Thus, for sufficiently large
m and N,

N N N N
~D(n)y Y, D() E, ()< DT eOT2  g(rn) T.2 (3.9)

J=1 j=1 j=1 j=1

so that an estimate for T 2 is

N-m N )2
T- N--a--n=, (E D(n) y /g~nm  (3.10)

D( ) e is easily calculated from

N

D(T) = D(T) 8 ,jej (3.11)

k=1

That is, D(T)e, is the mth divided difference of the data set {0,0,....ej,....,O).

Thus, In order to estimate T2, and hence S, It is only necessary to have a method
for determining a sufficiently large m. The domination of the divided differences by the

N-m N-m

errors is characterized by a large number of changes in sign between ' D(m")y and

J=1 j J

Dm) Y"If dominated by the errors, these values should be distribute randomly so that,

on average, one expects (N-m)/2 sign changes. Smooth data should have far fewer. The
number of sign changes in the divided differences Is therefore used as a criterion for
determining when the error Is dominant.

Figures 8, 0 and 10 demonstrate the ability of PRERR to calculate appropriate
smoothing parameters. Figure 8 shows a data set obtained from measurement; of the
variation of sound speed with depth in the Atlantic Ocean, as splined by an ordinary cubic
spline (the subroutine CUBSPL from the BSPLIN library was used). Figure 9 shows the
same spline with the data points removed so that the curve may be seen more easily. It
can be seen that the curve is not smooth, especially near x = 15. Figure 10 shows the
same data splined using BSMTH with the smoothing parameter calculated by PRERR. The
fit to the data Is still excellent but the spline is now smooth.
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If the relative magnitudes of the en accurately reflect the errors of the data collection
process, then averaged over a large number of data sets the average values of each w n

will be equal.

<w n> = C for all n (3.3)

Here angle brackets denote averaging over an ensemble of similar data sets.

Since f(x) is assumed to be a smooth, well-behaved curve, it should be possible to
fit a spline curve to It with high accuracy. Hence, the X2 of the "best" spline is

NPE 2  Np

x = 2  2 w2 N.2 (3.4)

nal en n=l

if It may be assumed that the errors in the data points are uncorrelated and that NP is
sufficiently large.

Let {gj, j=I,N) be any set of numbers. The mth divided difference of {gj} is a linear
transformation of the g, defined iteratively by

D(°) = 8 (3.5)

N N (D(m-1) D(m-1.
D,,) gj = , n = 1,N-m (3.6)

j=1 J=l

where 8n Is the Kronecker delta. By the Mean Value Theorem, If f(x) Is a Cm function,
then for any {xj, jul,N} there is a in (xn,xn+m) such that

N

Dm)f(xj) U (3.7)
Jul

Thus, from equation (3.1) one obtains
N fQ1() N

Wnj Yj ml +"L n.j mJl C I.8)
Jz1 J=l



Section 2.6 9

order of the spline is 4 and the smoothing exponent m is 2. Hence, the only difference
between this spline and the spline calculated by SMOOTH arises from the effect of the
stiffness weights. These weights have been decreased near x = 8 and x = 15 to allow
the spline to bend rapidly there. The stiffness has also been increased between x = 10
and x = 12 to flatten the top of the curve. Notice the absence of wiggles. These
stiffness weights were determined by the subroutine WTIBEG (See Section 4 and
Appendix A.5).

For the spline shown in Figure 3, the order of the spline was increased to 6. In
Figures 4 and 5, the second derivative of the SMOOTH spline and the sixth order BSMTH
spline are shown, respectively. Since the SMOOTH spline is necessarily of fourth order,
its second derivative is piecewise linear.

The spline shown In Figure 6 was obtained by decreasing the spline order to 3, and
reducing the knots as shown. At the positions of the double knots, the spline need no
longer have continuous derivative. Splines with discontinuous derivatives cannot be
obtained from SMOOTH or ICSSCU. For certain data sets they are necessary to obtain an
accurate fit: for example, when splining a ship hull with a chine. The spline shown in
Figure 7 carries this idea one step further. At the triple knots, the spline is no longer
continuous at all. While a use for a completely discontinuous spline may not be evident,
this example does serve to illustrate the versatility of the subroutine BSMTH.

3 CALCULATION OF INPUT VALUES FOR THE SPLINE X2

The smoothness of the splines determined by BSMTH, SMOOTH and ICSSCU is
regulated by the input parameter S, the value of the X2 of the resulting spline. It is often
not convenient for the user to supply this input parameter, nor is an appropriate value
likely to be known. In this section an algorithm is described which yields an appropriate
value for the parameter S, given the set of data points to be splined and their associated
errors and assuming that the errors are uncorrelated. Since statistical methods are used,
the algorithm works best when there are more than 15 data points. The algorithm is
implemented in the function subroutine PRERR.

Let (Xn,y,), n = 1,NP be the data points and e, their associated errors. It Is assumed
that the data may be derived from some unknown "smooth" curve, f(x), so that

Yn = f(xn) + E, (3.1)

En Is the actual error of the nth data point. This must not be confused with a., which is the

error of the nt data point estimated by the collector of the data. The • n are known ; the

E. are not.

The actual errors En may be expressed

En = wren (3.2)
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2) S < X2 1 : p, is too high. Therefore, set Pti = 1, X2hi = X2 1 and

p2 = Pmin. After X22 is determined there are, again, two possibilities:

i) S > X2 : P2 is too low. Set Plo = Pmin and X2 ,o = X22. p3 is now

determined such that (p3,S) lies on the straight line

interpolating (po, X2
1o) and (Phl 2 hi).

ii) S ( X22 : P2 is too high. However, p cannot be decreased
below Pm1n. Therefore, the iteration terminates.

b) Once (p1oX 2
1o), and (phl,X 2hi) have been determined the iteration proceeds

as follows:

1) If IS - X2,1 < S/10, the Iteration terminates.

2) If X2n - X2
10 > X2hi - X2n, then pr+ Is determined such that (p.,,,,S)

lies on the straight line Interpolating (pnX 2 ) and (PhX 2hI).

3) If X2n - X2,o < X2hl - X2n, then prj is determined such that (pr,,,S)

lies on the straight line interpolating (ploX 2
1o) and (pn X2').

This procedure, though somewhat more complicated than the simple secant
procedure used, for example, in the BSPLIN subroutine SMOOTH (see Reference 1,
chapter 14), converges much more rapidly.

2.6 Examples of splines calculated by BSMTH

As examples of the versatility of BSMTH In comparison with the BSPLIN subroutine
SMOOTH (the IMSL subroutine ICSSCU gives splines very similar to SMOOTH), a simple set
of data points has been splined using both SMOOTH and BSMTH. The input values for the

data point errors, ej and the spline X2 was the same In all cases. These Inputs completely
determine the spline calculated by SMOOTH. However, the versatility of BSMTH becomes
apparent when one examines the many qualitatively different curves which can be made
to fit the data using BSMTH. These curves are plotted in Figures 1 to 7.

Figure 1 shows the spline calculated by SMOOTH. Notice the wiggles caused by the
inability of the spline to bend rapidly near the points x z 8 and x a 18. The small crosses
below the curve Indicts the positions of the breakpoints or knots of the spline. For
SMOOTH, these are necessarily at the data point abscissae, with the exception of the
second and next to last data point.

Figure 2 demonstrates the effect of the stiffness weights In BSMTH. The knots for
this spline were placed at the data points (as are the breakpoints used by SMOOTH). The
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vXI and y* 2 are calculated in the subroutine SETUPR during the calculation of Rip

During the iteration for p, the X2 is evaluated using equation (2.17) in the subroutine
XSQC.

2.5 The iteration for p

The spline calculated by BSMTH is required to have a X2 equal to S, a value input by
the user. This is implemented by iterating over the value of a In equation (2.7) until
1X2 - S1 < S/10. In practice, BSMTH iterates over p, defined in equation (2.13) rather
than a.

As a increases from 0 to 1, the X2 of the spline minimizing G' Increases from some
minimum value to some maximum value. However, although the linear system of equation
(2.12) is theoretically Invertible for any a in (0,1), Rj is not invertible, and, depending on
the positions of the knots with respect to the data points (see Reference 1, chapter 13),
P1, might not be invertible either. Hence, as a approaches 0 or 1, there will be numerical
difficulties In the Inversion of equation (2.12). For this reason, the allowed range of a,
and therefore p is restricted. The upper and lower limits for p are denoted Pmn and P"',
respectively. Pmjn is given the default value of 0.001 and p", the default value of 1000.
These values have been found adequate to circumvent any numerical difficulties when
using BSMTH, though they may be changed If desired.

The Iteration for p is divided into two steps.

a) First, values of p and their corresponding X2 's are determined. These are
denoted (plo,X2 ,o), and (PhIX 2h). They are determined as follows.

Let Pn denote the nth value of p determined and X2n the corresponding
X2 . The Initial guess for p is p, = 1. The linear system of equation (2.12)

is inverted, and the X2 of the spline is evaluated. There are two
possibilities:

1) S > X2
1 : In this case, p, Is too low. Set pl0 = 1 and X2

1, a X2
1. P2 IS

set to pma,. Again there are two cases:

I) S > X2
2 : P2 Is still too low. However, p cannot be increased

above Pm,. Therefore, the Iteration terminates.

ii) S < X2
2 : P2 is too high. Set Phi a P2 and X2hi a X2

2. P3 is now
determined such that (P3,S) lies on the straight line

Interpolating (p,,, X2
1') and (pNX 2h).
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2.4 Calculation of X2

Using equations (2.1) and (2.2), the X2 of the spline may be expressed in terms of
y2, V ' Pij and 0,:

N N N
X2 RjpJ O - 2Y V,6, + y

2  (2.16)
i=1 jul i=1

To calculate the spline by evaluating the terms in equation (2.16) poses numerical
difficulties since the X2 Itself is generally much smaller than any of the three terms, so
that round-off errors become large. To circumvent the problem, the X2 is rewritten In the
following form:

N N N
X2 = 5 Z R,j.YYj - 2E vl, + y-2 (2.17)

n=1 jul n=1

where

% = O - Ox. (2.18)

nul en 2

* (Y - y )BR y') 2

n- en 2 (2.20)

N
Y~j= F 0'.K(xj) (2.21)

nal

and the On ere some arbitrarily chosen coefficients. The evaluation of the X2 using
equation (2.17) Is numerically well-behaved If On 'a 0%. The 011, are chosen using the
fact that B-spline coefficients closely approximate the functions they represent. That is,

n f(t) (2.22)
where

(tn+ -. + t.-)
t= k-i (2.23)

(see Reference 1, pp.171). BSMTH chooses s= so that (t*,,61,) lies on the piecewlse
linear curve interpolating the data points, which has breakpoints at the data points.
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2.3 Evaluation of Pnj, Rnj, and v,

The matrix Pnj is evaluated in the subroutine SETUPP. Since Bnk(X) is a piecewise
polynomial of order k, the integrals in the definiton of Pnj can be evaluated by a series of
integrations by parts.

Np k-m

p=1 q=1

If k > 2m, then m-q will become negative. By convention Bk ) (x), for q < 0, is defined to

be the qth integral of Bj,k(x). The subroutine BSPLVD, from the BSPLIN library, is used to
evaluate the derivatives of the B-splines. If k > 2m, integrals of the B-splines must also
be calculated. This is most easily accomplished by calculating the coefficients of the
knot sequence corresponding to the integral of each B-spline (see Reference 1, page
150) and then using the BSPLIN subroutine BVALUE to evaluate It. However, to calculate
the spline coefficients, k-2m knots must be appended to the knot sequence. Thus the
dimension of the array containing the knots Is required to be Nk + max(O,k-2m).

Owing to the left continuity of the B-splines as implemented in the subroutines
BSPLVD and BVALUE, and the discontinuity of the higher derivatives of the B-splines, they
cannot be evaluated right at the knots. Instead, they are evaluated at
(0.9999t, + .0001t+) and (0.0001t,. .9999t,+,) for each knot interval.

In practice, Pi In equation (2.12) is replaced by Pu/A, where A Is a normalizing
factor used to ensure that the elements of Plj are of order 1. This averts unwanted

overflows and underfiows. It has no effect on the minimization of GM as the factor 'a can
be absorbed into a redefinition of a. A Is defined by

A tktj) 
(2.15)

(N-k+ 1 )2m-'

The matrix Rij is evaluated in the subroutine SETUPR making use of the BSPLIN
library subroutine BSPLVB to evaluate Bi,k(xn). This subroutine is a modification of the
subroutine L2APPR In the BSPLIN library.
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f or given a, and iterating over a until the spline has the required X2.

2.2 Minimization of G x f or given a

Using equations (2.1), (2.2), (2.5). and (2.6), the functional G" may be written in the
following form:

N N N
G2 E ((l -a)Rn, +' a~)0 - 2(l -p) v,6, + (1-_p)y 2  (2.7)

n1l jl n1l

where

N PB=( , ) j k X , 
( 2 .8 )

n=1 O

P , PiN f t d"_Bpk(xn)_d'_BjkCXn)dx (2.9)

VjN YnBjk(Xn) (.0

y2 2
9 =~-.-(2.11)

G Is minimized with respect to the spline coefficients, ~.,when

E (RFI +. PP,) ' vn (2.12)
Jul

where

p a (2.13)

Since both P12 and Rjare symmetric, banded, positive definite matrices, the subroutines
BCHFAC and BCHSLV In the BSPLIN library are appropriate for the solution of the linear
system In equation (2.12).
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X2 measures the degree to which the curve approximates the data and is minimized when
the curve interpolates the data.

The second functional is a measure of the smoothness of the spline function. Its
definition relies on the observation that, for a smooth function, the average values of its
high order derivatives will be considerably lower than those of a 'wiggly' function. Hence,
one uses the functional

F XN X dx (2.3)
X1  dx 2

as a measure of the smoothness of the spline.

The spline desired is that which has a given X2 while minimizing F. In practice, this
is found by finding the spline which minimizes the functional

G = aX2 + (1 -a)F (2.4)

for given a. Since G is quadratic in the spline coefficients 0., this amounts to the solution

of a linear system. An iteration is then done to find the value of a for which X2 has the
required value. As implemented by Reinsch and de Boor, the splines are necessarily
cubic, and the knots are constrained to be the data point abscissae, x., n=l,N.

A shortcoming of the above algorithm is that the second derivative of the spline is
minimized even In places where one might expect It to be high: that Is, where the data
shows a pronounced bend. This problem has been avoided in BSMTH by generalizing the
functional F to

F N-+1 / [df(x) ]dx (2.5)
nal

The basis for the linear space of spline functions has been chosen to be the B-spline
basis (see Reference 1, chapter 9). The nt B-spline of order k is denoted Bfk(x) and the
knots of the spline are denoted t, n a 1,Nk.

The coefficients 8. can be used to alter the 'stiffness' of the spline between the
pair of knots(t..k+,t.-k+2). In regions where the spline curve Is required to be very flat,

the 8, will be large. In regions where the spline Is expected to have high curvature, the
8n will be small.

The required spline is found by minimizing the functional

G" - aX2 + (1 -a)F" (2.6)
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decreased. Two subroutines, WTIBEG and WTINEW (see Section 4) are
provided which calculate appropriate default values for the stiffness
weights from the data points or from previous spline fits to the data,
respectively.

5) SMOOTH and ICSSCU Implement smoothing by minimizing the second
derivative of the the spline. BSMTH allows one to choose the derivative
which is to be minimized, again allowing more control over the character of
the spline.

BSMTH does have the drawback that it Is somewhat slower than the other
subroutines, though usually at most by a factor of two. However, much of the extra time
can often be made up by reducing the number of knots of the spline with no deterioration
in the quality of the fit (the execution time Is roughly proportional to the number of
knots). Moreover, when splining in two dimensions, the time savings involved in having
the data points independent of the knots far outweigh the slight inefficiency of BSMTH.

In the following sections the algorithms for each of the subroutines is discussed in
detail. User's guides including sample runs of the subroutines are given In Appendix A.
The computer code for each subroutine is given in Appendix B.

2 THE BSMTH ALGORITHM

2.1 Implementation of Smoothing

The technique used in ICSSCU and SMOOTH, for constructing a smooth spline curve

through a given set of data is an extension of an algorithm first proposed by Whittaker 4

and later considered by Schoenberg 5, Reinsch3 and de Boor1 . The Idea Is to define two
functionals dependent quadratically on the spline coefficients for which one is solving.
One functional is the X2 of the spline curve,

2 n [ J2  (2.1)

where

(Xn,yn), ncl,Np; are the data points to be interpolated,

en is the error associated with the n-th data point, and

N
f(x) a 1 Onfn(X) (2.2)

n=1

The functions fn(x) are the basis functions for the linear space of spline functions. The

i
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= 5, If O.9*X2 of the spline of the data point abscissae is greater than
the value predicted by PRERR.

= 6, If 1.1*X 2 of the spline of the data point abscissae is less than

the value predicted by PRERR.

= 7, 8, 9 , As for IER = 4, 5, and 6 respectively, but for the spline of
the data point ordinates.

BCOEFX: An array of length N containing the B-spline coefficients of the
spline of the abscissae.

BCOEFY: An array of length N containing the B-spline coefficients of the
spline of the ordinates.

ARCL An array of length N containing the estimated arc-length at each

data point.

Via COMMON / CHISQ /

XSQ = X2 of the spline

WORK SPACE

WTI An array of length N which is used to contain the stiffness weights
as calculated by WTIBEG.

G An array of length NPT*IMAX used as work space in the function
PRERR.

R An array of length 3*K*N

IWK = max(NKT1,K**2)

WK An array of length 4*IWK
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The following data has been splined using BSMCRV. The resulting spline has been
plotted in Figure 11.

NPT = 22, N - 20, K - 4, NKT1 - 24, ILWK - 24, IER - 8
J X(J) Y(J) E(J)
1 -8.24 -8.89 8.3
2 0.06 0.03 8.3
3 0.20 0.18 0.3
4 0.31 8.39 8.3
5 0.43 8.47 0.3
6 8.45 8.63 8.3
7 0.39 8.77 8.3
8 0.38 0.86 8.3
9 0.29 0.94 8.3

18 8.11 0.97 8.3
11 0.086 1.83 8.3
12 -8.08 1.82 8.3
13 -8.17 1.80 0.3
14 -8.23 8.97 8.3
15 -8.31 8.91 8.3
16 -8.29 8.80 8.3
17 -8.33 8.78 8.3
18 -8.38 8.59 8.3
19 -8.15 8.45 8.3
28 8.86 0.33 8.3
21 0.26 8.11 8.3
22 8.66 8.03 8.3

The spline coefficients and the fractional arc length values returned by
BSMCRV are
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J BCOEFX(J) BCOEFY(J) ARCL(J)
1 -0.35219 -8.28888 8.888E+00
2 -0.19660 -0.10976 0.90258E-01
3 -8.39770E-01 -8.1964GE-01 0.14756
4 0.10954 0.11428 8.21378
5 0.24699 0.27045 8.25486
6 0.37681 8.43389 0.29910
7 0.46363 0.61444 8.34165
8 0.40611 0.79660 0.36694
9 0.24539 0.97128 8.48857
10 8.56733E-81 1.8224 8.45154
11 -8.13699 1.8425 8.47336
12 -0.32268 0.88117 8.61256
13 -8.34446 8.69866 8.53832
14 -0.21200 0.53258 0.55785
15 -8.53392E-81 0.39341 0.58498
16 0.11140 8.26571 0.61621
17 0.27779 0.142S2 8.64638
18 0.44669 0.43413E-81 0.67814
19 8.62444 0.14856E-81 0.73545
20 8.88086 -8.31815E-81 8.88381
21 0.88606
22 1.8880

The values returned via COMMON / CHISQ / are

XSQX - 8.7638BE-81, XSQY = 8.11647, SX - 0.71920E-01, SY 8.11766
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A.2 BSMTH : User's Guide

SUBROUTINE BSMTH(S,JDER,NPT,X,Y,E,N,K,NKT1 ,T,WTI,BCOEF,R,IWK,WK,IER)

PURPOSE: BSMTH calculates the spline of order K, with knots T(l),=1,NKT which has chi-
square of S with respect to the data points X(I),Y(I),I=1,NPT, and which has as small
a JDER th derivative as possible.

LANGUAGE: FORTRAN

USAGE: EXECUTE mainpgm,BSPLIN:HLLYSP/LIB,BSPLIN:BSPLIN/LIB

CALLS subroutines SETUPQ, SETUPR, XSQC, SMODAV and INTERV, BCHFAC, BCHSLV from
the BSPLIN library

INPUT

S : The chi-square of the spline with respect to the data will be within
10% of S, if possible. As S is increased the spline becomes
smoother but farther from the data points. Function PRERR can be
used to give a value for S If a reasonable value is not known.

JDER : The integral of the square of the JDERth derivative of the spline is
minimized (subject to the constraint that XSQ = S). If smooth curves
are desired a value of JDER = 2 is appropriate. JDER should be non-
negative and less than K.

NPT : The number of data points.

X : An array of length NPT containing the data point abscissae in
ascending order.

Y : An array of length NPT containing the data point ordinates.

E The errors of the data points. The smaller the error the closer the
spline will come to that point.

N The number of B-splines used to represent the spline.

K : The order of the spline.

NKT1 = N + K + max(O,K-2*JDER)

T An array of length NKT1 the first N+K elements of which contain the
knot sequence (in ascending order). The remaining array elements
are used in subroutine SETUPP.

WTI : An array of length N of which only the first N-K+1 elements are used
(rather than passing in an otherwise superfluous argument). WTr(I)
Is a weight for the Integral of the square of the JDERt h derivative of
the spline between T(I K-1) and T(1+K). The larger WTI(I) Is the
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smoother the integral will be over this region. These weights are
relative: i.e. changing all the WTI by a constant factor will not
affect the resulting spline.

IER = 0, If JDER,T,WTI and the first N*K elements of R are as on the
previous call to BSMTH ( this means that the matrix P need not be
recalculated )

= 1, if P is to be recalculated

Via COMMON / PLIMS /

PMIN = Minimum allowed value of p (See (Section 2.5)). Default is 1.OE-03

PMAX = Maximum allowed value of p. Default is 1.OE+03.

OUTPUT

IER = 0, Calculation has been successful

= 1,ifJDER>K- 1

= 2, If NKT1 < N + K + max(O,K-2JDER)

= 3, If IWK < max(NKT1,K**2)

= 4, If more than 30 Iterations are required to find the correct value
for P. Indicates numerical difficulties in the solution of the linear
system

= 5, If the X2 of the spline > 1.1*S

= 6, If the X2 of the spline < .9*S

BCOEF : An array of length N containing the B-spline coefficients of the
spline.

Via COMMON / CHISO I

XSQ X2 of the spllne

WORK SPACE

R : An array of length 3*K*N

IWK * max(NKT1,K*K2)

WK An array of length 4sIWK
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The following input data has been splined using BSMTH. A plot of the spline is

shown in Figure 2.

S =18.8 . JOER -2 , NPT 18 , K -4, N - 18 , NKT - 14

J X(J) Y(J) E(J) T(J) WTI(J)
1 7.8 0.8 0.805 7.0 8.51183E-82
2 8.0 13.5 0.5 7.8 8.55789
3 9.8 15.5 0.5 7.8 1.1778
4 10.0 14.S 8.5 7.8 1.1778
5 11.8 15.5 8.5 9.8 2.6588
6 12.8 15.0 8.5 18.0 8.88333
7 13.8 14.5 0.5 11.8 8.15487E-81
8 14.8 15.8 8.5 12.8
9 15.8 13.5 0.5 13.8
18 16.8 8.0 0.885 14.8
11 16.1
12 16.1
13 16.1
14 16.1

The spline coefficients obtained were

J BCOEF(J)
1 8.3195889E-04
2 14.83531
3 14.93398
4 15.00996
5 15.11922
6 1S.89243
7 1.00840
8 14.98065
9 13.10889
18 -2.875629

and the X2 of the spline was

XSQ = 9.9912
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A.3 NEWWTI User's Guide

SUBROUTINE NEWWTI(NOLD,BCOEF,NKTOLD,TOLD,NKTNEW,TNEW,NWTI,WTI,JDER)

PURPOSE: NEWWTI uses a previously calculated spline fit to predict values for the
stiffness weights 6, for use in BSMTH.

LANGUAGE: FORTRAN

USAGE: EXECUTE mainpgm,BSPLIN:HLLYSP/LIB, BSPLIN:BSPLIN/LIB

CALLS subroutines SMODAV and BVALUE from the BSPLIN library.

INPUT

NOLD : Number of B-splines for old spline fit.

BCOEF : Array of length N containing the B-spline coefficients for the old
spline fit.

NKTOLD: Number of knots for the old spline fit.

TOLD : Array of length NKT containing the knots for the old spline fit.

NKTNEW: Number of knots for the new spline fit.

TNEW : Array of length NKT containing the knots for the new spline fit.

NWTI : Number of stiffness weights for the new spline fit.

JDER : The order of derivative minimized by BSMTH.

OUTPUT

WTI : Array of length NWTI containing the stiffness weights, 81.
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The following input data has been used to generate stiffness weights by NEWW 1.

This data is the output data from the example in Section A.2.

NOLD - 4 , NKTOLD = 14 . NKTNEW = 14 , NLJTI - 7 , JOER 2

. TOLD(J) TNEW(J)
1 7.8 7.8
2 7.8 7.8
3 7.0 7.0
4 7.8 7.8
5 9.0 9.0
6 10.0 18.0
7 11.0 11.0
8 12.0 12.0
9 13.0 13.8
18 14.0 14.0
11 16.1 16.1
12 16.1 16.1
13 16.1 16.1
14 16.1 16.1

The stiffness weights obtained were

. WTI (J)
1 8.18088E-82
2 O.6G83GE-01
3 1.1696
4 8.51772
S 4.8526
6 8.14587E-81
7 8.10088E-82
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A.4 PRERR: User's Guide

FUNCTION PRERR(NPT,X,Y,E,IMAX,G,WK,IFLAG)

PURPOSE: This function calculates the mean error in the data points. The smoothing
parameter used by BSMTH may then be determined by: S = NPT*PRERR**2.

LANGUAGE: FORTRAN

USAGE: EXECUTE mainpgm,BSPLIN:HLLYSP/LIB

CALLS subroutines PARDIF

INPUT

NPT : The number of data points.

X . An array of length NPT containing the data point abscissae in
ascending order.

Y : An array of length NPT containing the data point ordinates.

E : The errors of the data points.

IMAX : The maximum number of partial differences taken is 2*IMAX. The
suggested value for IMAX is 5.

IFLAG = 0, If the calculation is to be done from scratch.

= 1, If X, E and G have not been changed since the previous call.

OUTPUT

PRERR returns the mean error in the data points.

WORK SPACE

WK : An array of length NPT

G : An array of length N*IMAX
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The mean error in the following data has been predicted by PRERR. Splines of this

data are shown in Figure 8, 9, and 10 and are discussed in Section 3.

N = 48, IMAX = 5

J X(J) Y(J) J X(J) Y(J)
1 8.00 1507.89 21 22.70 1482.57
2 3.63 1587.85 22 23.88 1481.83
3 7.26 1587.81 23 23.58 1488.34
4 18.90 1587.77 24 24.20 1478.83
5 12.20 1587.17 25 26.18 1476.17
6 13.78 1585.82 26 27.88 1475.82
7 14.18 1502.49 27 28.18 1472.68
8 14.58 1581.53 28 29.88 1478.38
9 14.88 149.58 29 29.98 1468.78
18 15.28 1498.27 38 38.68 1467.92
11 15.30 1496.94 31 44.80 1463.25
12 15.48 1495.93 32 52.70 1464.54
13 15.78 1494.92 33 58.48 1466.89
14 16.68 1492.87 34 65.28 1469.74
15 16.88 1491.84 35 74.58 1475.43
16 17.38 1498.09 36 88.38 1478.88
17 18.40 1488.33 37 94.58 1482.65
18 20.90 1486.22 38 118.88 1487.18
19 21.88 1484.77 39 119.18 1489.48
28 22.58 1483.31 48 158.18 1491.48

PRERR returned the value 0.20361
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A.5 WTIBEG User's Guide

SUBROUTINE WTIBEG(NPT,X,Y,NKT,T,NWTI,WTI)

PURPOSE: WTIBEG uses the data points to calculate values for the stiffness weights 61
for use in BSMTH.

LANGUAGE: FORTRAN

USAGE: EXECUTE mainpgm,BSPLIN:HLLYSP/LIB, BSPLIN:BSPLIN/LIB

CALLS subroutines SMODAV and BVALUE from the BSPLIN library.

INPUT

NPT : The number of data points.

X : An array of length NPT containing the data point abscissae in
ascending order.

Y : An array of length NPT containing the data point ordinates.

NKT : Number of knots for the spline.

T : Array of length NKT containing the knots for the spline.

NWTI : Number of stiffness weights for the spline fit. NWTI = NKT-2*K+1
where K is the order of the spline.

OUTPUT

WTI : Array of length NWTI containing the stiffness weights, 81.
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The following input data has been used to generate stiffness weights in WTIBEG.
The spline obtained from this data is discussed in Section 2.6 and is plotted in Figure 2.

NPT = 10,NKT = 14, NWTI = 7

J X(J Y(J) T(J)
1 7.8 0.0 7.0
2 8.0 13.5 7.8
3 9.0 1,5 7.0
4 18.0 14.5 7.8
5 11.0 15.5 9.8
6 12.8 15.0 18.8
7 13.8 14.5 11.8
8 14.8 15.8 12.0
9 15.0 13.5 13.8
18 16.8 0.0 14.8
11 16.1
12 16.1
13 16.1
14 16.1

The stiffness weights obtained were

I WTI(J)
1 8.61183E-82
2 0.55789
3 1.1778
4 1.1778
5 2.6588
6 8.88333
7 8.15487E-81

4
I
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Appendix B

SUBROUTINE LISTINGS

C
C * *
C * THESE COMPUTER SUBROUTINES ARE THE PROPERTY OF THE *
C * CANADIAN DEPARTMENT OF NATIONAL DEFENCE ....
C * *
C * THEY SHALL BE USED ONLY FOR PURPOSES AUTHORISED
C * BY THE DEPARTMENT ............................ .
C *
C * THEY SHALL NOT BE DISCLOSED TO A THIRD PARTY *

C W LITHOUT THE WRITTEN PERMISSION OF THE *
C * DEPARTMENT ................................
C * *
C . . . c.

B.1 BSMCRV

SUBROUTINE BSMCRV(NPT.X,Y,E.N,K.NKT,T,WTI,BCOEFX,BCOEFY,
RIWK.WK,ARCL,G.IER)

C ------------------------------------------------------------------- C
C C
C Given data points (X(I),Y(I)), I-1,NPT BSMCRV finds a smooth C
C curve approximating them by splining the abscissae and ordinates C
C separately with respect to the fractional arc-length along the C
C spline. An approximation for the arc length at each point is C
C obtained from the distances between the points. BSMTH is used to C
C spline the absissae and the ordinates. PRERR is used to C
C determine a smoothing factor for the splines and WTIBEG is used C
C to determine stiffness weights. C
C C
C AUTHOR: David Hally , May 1981 C
C C
C USAGE: C
C EXECUTE mainpgm.BSPLIN:HLLYSP/LIB,BSPLIN:BSPLIN/LIB C
C C
C CALLS PRERR,BSMTH,WTIBEG C
C C
C INPUT: C
C C
C VIA SUBROUTINE ARGUMENTS: C
C C
C NPT : The no. of data points C
C X : An array of length NPT containing the data point C
C Y : An array of length NPT containing the data point C
C ordinates. C
C E : The errors of the data points. The smaller C
C the error the closer the spline will come C
C to that point. C
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C N The no. of B-splines. C
C K Tne order of the spline. C
C NKTI = N+K.max(8.K-2*JDER) C
C T An array of length NKT1 the first N+K elements of C
C which contain the knot sequence. The variable used C
C to parametrize the curve is the arc length divided by C
C the total length of the curve. Thus the knots must C
C span the interval [8,11. Default gives a uniform C
C distribution of knots over this interval. C
C C
C IER - if defaults are desired C
C 1 If aefaults are not desired C
C C
C COMMON /NODFLT/ C
C C
C IMAX : 2*111AX is the max. no. of divided differences allowed C
C to find the error (used in function PRERR). Default C
C value is S C
C SMPACT : See comments below C
C C
C COMMON /INTEXP/ : C
C C
C JDER : The integral of the square of the JDER-th derivative C
C of the spline is minimized ( subject to the CON- C
C straint that XSQ-S). Default value is 2 . C
C JOER must not exceed K-1 C
C DEFAULTS: C
C C
C If IER - 0 on input then: C
C JOER -2 C
C SMFACT - 1.8 C
C IMAX =5 C
C T(I) - (I-K)/(N-K+1), I-1,NKT i.e. knots arp uniformly C
C distributed in (8.1) C
C C
C OUTPUT: C
C C
C IER 0 8 . Iteration converged C
C -1, If JDER > K-1 C
C - 2 , If NKTJ < N+K+MAX(8,K-2*JDERI C
C - 3 , If IWK < max(NKT1,K**2) C
C = 4 , If iteration for P1 in BSMTH did not converge C
C during the spline of the X-values C
C - 5 , If the chi-square of the spline of the X-values C
C returned by BSMTH > 1.1*S (i.e. PMAX in BSMTH C
C is too small) C
C - 6, If the chi-square of the spline of the X-values C
C returned by BSMTH < .9*S (i.e. PMIN in BSMTH C
C is too large) C
C - 7,8,9 As for IER-4,5,1,respectivelw, but for the spline C
C of the Y-values C
C BCOEFX - Array of length N containing the B-spline coefs. for C
C the X-values of the curve C
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B.6 SETUPP

SUBROUTINE SETUPP(NPT.EJDERTNKTNKJTI. PA,.09DB1,IKA1)
C ------------------------------------------------------------------- C
C C
C SETUPP calculates the matrix P ( see Ref. Manual C
C C
C AUTHOR: David Hally . May. 1981 C
C C
C CALLED by BSMTH C
C C
C CALLS SMODAV C
C from BSPLIN library BVALUEBSPLVD C
C C
C ------------------------------------------------------------------- C

REAL T(NKT),P(KN),A(K.K),DB(K.K)DB1(KK).JTI (N),WK(NKT).
* E(NPT),A1(KK),T1,T2,HHI

INTEGER NKTJDERNK.MMAXIJLLJ1,IKJ.MI.KM

C A normalizing factor H is calculated. Normalization by H ensures that

C most of the elements of P are of order 1.

H-((T(N+K1)-T(l )/FLOAT (N-K+))**I 2wJDER-1)

C P is initialized and extra points are added to the knot sequence
C to allow the calculation of higher order B-splines if necessary
C in the integration by parts.

H-H/(SMODAV (NPT, E) **2*SMODAV (N-K+IL.TI ))

DO 10 I=IK
00 10 J-1,N

18 P(I,J)=8.
IF(N+K.EQ.NKT)GD TO 38
DO 20 J-NKT.N-K+1,-1

28 T(J)-T(N+K)*1.8001
38 MMAX-MINO(JDER,K-JDER)

C An iteration over the intervals between knots is begun.

DO 140 I.K,N
IF(T(I+I).EO.T(I))GO TO 148
11-I-K+1

C The derivatives of the B-splines needed in the integration by parts
C are calculated using BSPLVD. Due to the left continuity of BSPLVO
C the derivatives are evaluated close to but not right at the knots.

T1-.9999*T(I)+.8881*T(I+1)
T2-.0001*T(I)+.9999*T(1+)
CALL BSPLVD(T,K,T1,I,A,DB,K)
CALL BSPLVD(T,K,T2,I,A,DB1,K)

C The integrals of the B-splines needed in the integration by parts
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CALL PARDIF(N,X,14K,J.J+1,N-J)

J2=J2+2
IF(NSGNCH.GT.O/2.)GO TO 130
IF(J.GE.IIIAX-2)G0 TO 120
GO TO 78

120 SDEV.(O/2.-NSGNCH)/SORT(O)

C The error is determined from the divided difference by taking the
C root mean square of the divided difference values weighted by
C the expected value for a unit error (given by G(I,J+1)).
C anomalously high values are discarded and the resulting error
C is corrected by multiplying prerr by 1.14

138 OEV-0.0
D0 148 I-J+1,N-J

148 OEV(WK(I)/G(1,J+1))**2+OEV
IF (OEV.EQ.O.O)RETURN
NM2J-N-J2
PRERR-SQRT (0EV/FLOAT (NII2J) )*2.0
00 158 I-J+1,N-J

IF(ABS(LK(I)/G(I,J+1fl.LT.PRERR)GO TO 158
OEV-DEV-WK(I)/G(I,J+1) )**2
NII2J-NI2J-1

158 CONTINUE
PRERR-SQRT (0EV/FLOAT (NTI2J) )*1.14

RETURN
END
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REAL X(N) ,Y(N) ,E(N) ,W.K(N) ,G(N, IMAX) ,OEV,O,PRERR
INTEGER NSGNCH,NrI2J,N.K,IMAX,J,J2,KMIN,KMAX,IFLAG,I

COMMON /CERR/ SDEV

IMAX-MINO(N/2. IMAX)
SDEV-8. 8
PRERR-0. 8
IF(IFLAG.EQ.1)GO TO 50

C G is calculated.

DO 10 1-1,N
CU .l)-E(I)
DO 10 J-2,IMAX

10 G(I.J)-8.8
00 38 1-1,N

DO 28 J-1,N
28 WK(J)-O.O

WK (1)-E (I)
DO 38 J-1,IMAX-1

KMIN-MAXO(I-J-1,J)
KMAX.MIN8 (I+J+1 ,N-J.1)
CALL PARDIF(N.XJ.JK,J-1,KMIN,KMAX)
IF(I .GT.J)KMIN.KMIN+1
IF (I+J. LT. N+1 ) KMAX-KMAX-1
0O 38 K-KMIN,KMAX

30 G(K,J+1)-W.K(K)Nc*2+G(K,J+1)
00 48 J-l,IMAX-1

0O 48 I-J+1,N-J
48 G(IJ+1).SQRT(G(I,J+1))

C Divided differences are taken until the no. of sign changes is
C greater than that expected for random date. If IMAX-2 iterations
C occur first SDEV is set to the number of standard deviations
C that NSGNCH is below its expected value.

s8 DO 68 1-1,N
68 WJI(I).Y(I)

J-0
J2-0

C The no. of sign changes in the divided differences is determined.

78 NSGNCH-0
I-J+1

80 0O 98 K.I+1,N-J
IFU.JK(I)*LJK(K) )188,98,118

98 CONTINUE
188 NSGNCH.NSGNCH+l
11e I-K

IF(I.LT.N-J)GO TO 88

D-N-J2-1
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B.5 PRERR

FUNCTION PRERR(N.X,Y,E,IMAX,G,WK,IFLAG)
C ---------------------------------------------------------------- C
C C
C This subroutine calculates the mean error in the data points (X,Y) C
C by taking divided differences until the no. of sign changes in C
C the I-th divided difference is that expected from random data. C
C The error is then determined by assuming that the contribution C
C from the smooth curve underlying the data is negligible. C
C C
C AUTHOR: David Hally , Jan. 1981 C
C C
C USAGE: C
C EXECUTE mainpgmBSPLIN:HLLYSP/LIB C
C C
C CALLS PARDIF C
C C
C INPUT: C
C C
C N - No. of data points C
C X : An array of length N containing the data point C
C abscissae in ascending order. C
C Y : An array of length N containing the data point C
C ordinates. C
C E : An array of length N containing the relative errors of C
C the data points. The absolute errors are obtained by C
C multiplying the returned value of PRERR by the C
C relative errors. C
C IFLAG - 8 If calculation is to be done from scratch C
C = 1 , If IMAX,X,E, and G have the same value as in the C
C previous call C
C G - Array of dimensions N, IMAX. G(I,J) is the expectation C
C value of the J-th divided difference given an error C
C of E() in the I-th data point. If IER-0 G Is C
C calculated ; otherwise it is assumed known. C
C IMAX : 2*IMAX is the max. no. of divided differences allowed C
C IMAX = S is suggested C
C C
C OUTPUT: C
C C
C PRERR = The calculated mean error in the data C
C C
C VIA COMMON / CERR / C
C C
C SDEV : The no. of sign changes in the divided difference used C
C to calculate PRERR is greater than that expected for C
C random data less SDEV standard deviations C
C C
C WORK SPACE : C
C C
C WK(I) OF DIMENSION N C
C C
C ------------------------------------------------------------------- C
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B.4 PARDIF

SUBROUTINE PARDIF(N.X,F,J,IMIN,IMAX)
C ------------------------------------------------------------ C
C C
C PARDIF calculates the divided difference of the data points C
C (X(I),F(I)),I-IMIN,IMAX. To avoid over- or underflows the X C
C intervals are normalized by the factor H-(X(N)-X(1))/N . This is C
C of no consequence in PRERR since only ratios of partial diff- C
C erences are of significance. C
C C
C AUTHOR: David Hally , May. 1981 C
C C
C CALLED by PRERR C
C C
C ------------------------------------------------------------C

REAL X(N),F(N),H
INTEGER J,IMIN,IMAX.I,N,IT

H- (X (N) -X (1))/FLOAT (N)
DO 10 IT-1,2

D 10 I-IMIN,IMAX-IT
18 F(I)-H*(F(I+1)-F(I))/(X(I+IT)-X(I-J))

DO 20 I-IMAX-2,IMIN,-1
20 F(I+1)-F(I)

F(IMIN)-8.8
F (I MAX) -8.8
RETURN
END
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B2-BVALUE (TOLD,*BCOEF *NOLO, KOLO. T2, JOER)
WTI (IW)-(Bl*(B1+B2)+B2**2)*(TNE4(I+KNEW)-TNEWJU+KNEJ-1))/3.

10 CONTINUE

C The modal average of W.TI is determined and LJTI (I is set to
C WTIAV/WTI(I)

LJTIAV-SMOOAV(NWTI ,WTI)
IF(WTIAV.EQ.O.O)GO TO 30
WMrIN.L4TIAV*1 . E-03
L.JIAX-WT IAV* . OE+03
DO 20 1W-1,NWTI

DUMM~Y=JTI (1W)

* WTIAV/WTI(ILJ)
IF(DUMMIY.GT.WMAX)LJTI (IW).1.OE-03

20 IF(DU IY.LE.W1IN)WTI (IW)..E+03
RETURN

30 DO 40 IW-1,NWTI
40 WTI(IW)-1.0

RETURN
END
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B.3 NEWWTI

SUBROUTINE NEWWTI(NOLO.BCOEFNKTOLD.TOLDNKTNEW, TNEW,NWTI.WTI,
JOER)

C ------------------------------------------------------------C
C C
C NEWWTI uses the previous spline fit to predict values for the C
C integral weights WTI for use in BSMTH. C
C C
C AUTHOR: David Hally , Aug. 1981 C
C C
C USAGE: C
C EXECUTE mainpgm,BSPLIN:HLLYSP/LIB C
C C
C CALLS SMODAV C
C from BSPLIN library : BVALUE C
C C
C INPUT: C
C C
C NOLD No. of B-splines for old spline fit C
C BCOEF Array of length N containing the B-spline coefficients C
C for the old spline fit C
C NKTOLD No. of knots for the old sptine fit C
C TOLD Array of length NKT containing the knots for the old C
C spline fit C
C NKTNEW m No. of knots for the new spline fit C
C TNEW - Array of length NKT containing the knots for the new C
C spline fit C
C NWTI No. of integral weights for the new spline fit C
C JOER The order of derivative minimized bW BSMTH C
C C
C OUTPUT: C
C C
C WTI - Array of length NWTI containing the integral weights C
C C
C ------------------------------------------------------------------- C

REAL BCOEF (NOLO), TOLD (NKTOLD), TNEW (NKTNEW), WTI (NWTI),
* B1,B2,TlT2,WMINWMAXWTIAV.DUMMY

INTEGER NOLDNKTOLD,NKTNEW,KOLD,KNEW,NWTI,JDER, I,IW

KOLD-NKTOLD-NOLD
KNEW-(NKTNEW-NWTI+1)/2
IW-8

C On each knot interval the integral of the square of the JOER-th
C derivative of the given spline is approximated

00 18 I-1,NWTI
IF(TNEW(I+KNEW-).EQ.TNEW(I+KNEW))GO TO 18
IW-IW+1
Ti-. 9999*TNEW (I KNEW-1 ) +. 8081*TNEW (I KNEW)
T2-. 8881*TNEW (I KNEW-1) +. 9999*TNEW (I+KNEW)
Bl-BVALUE(TOLD,BCOEF.NOLD.KDLD.Ti,JDER)



36 Appendix B

PHI -P1
P1=. l*PLO+.9*PHI
GO TO 228

C Similarly, if PI is very close to PLO, it is possible that XSQ<XSQLO
C In this case PLO is set to P1, XSQLO to XSQ and P1 to .9*P1+,1*PHI

178 IF(XSQ.GT.XSQLO)GO TO 188
XSQLO-XSQ
PLO-Pi
P1=..9*PLO+. 1*PHI
GO TO 220

180 IF((S-XSQLO).LT. (XSQHI-S))GO TO 198
P2. (P1-PHI )*(S-XSQHI )/ (XSQ-XSQHI )+PHI
GO TO 288

198 P2= (P1-PLO)*(S-XSQLO) /(XSD-XSQLO)+PLO

280 IF(P2.LT.P1)GO TO 218
PLO-PI
XSQLO=XSO
Pl-P2
IF(P1.GT.PHI }PI=(PLO+PHI) /2.
GO TO 220

210 PHI-Pi
XSQHI =XSQ
P1.P2
IF(P1.LT.PLO)P1= (PLO+PHI )/2.

228 CONTINUE
I ER-4

C BCOEF is returned to its correct value (see comment before call to
C XSOC).

238 DO 240 I-1.N
248 BCOEF(I)-BCOEF(I)+W.K(I,1)

RETURN
END
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so BCOEF(I)-BCOEF(I)-JK(I,l)
XSQ-XSI2C(N.K,BCOEF,R(1,1,2)j.JKC1,3),LJK(1,4),YSQ)

C If XSQ is within .1*S of S the iteration terminates.
C The first value of XSQ calculated is for :P1-1. , then P1-PMIN or
C P1-PTIAX depending on whether S is less or greater than XSQ. The third
C value of P1 is predicted by linear interpolation of the two known
C points. The known P's and their corresponding XSQ's are then:
C (PLO,XSQLO). (PHIXSQHI), and (P1,XSQ) respectively. Subsequently
C improved values of P1 are predicted by a linear interpolation
C of (P1,XSQ) and either (PLO,XSQLO) or fPHI,XSQHI) depending on
C whether S is closer to XSQLO or XS(2HI.
C If XSQHI < S or XSQLO > S initially the iteration terminates.

180 -IF(ABS(S-XSQ).LT.S*.1)GO TO 230
GO TO(110,130),IT
GO TO 168

110 IF(S.LT.XSQ)GO TO 120
XSQLO.XSQ
PLO-Pi
Pl-PrIAX
GO TO 228

128 XSQHI-XSO
PHI-P1
P1=PMIN
GO TO 220

130 IF(P1.EQ.PIIIN)GO TO 148
IF(S.LE.XSQ)GO TO 135
IER.5
GO TO 238

13S XSQHI-XSQ
PHI-P1
GO TO 1S8

140 IF(S.GE.XSQ)GO TO 145
I ER-S
GO TO 230

146 XSQL.O.XSQ
PLO-Pi

158 P1- (PHI-PLO)*(S-XSQLO) /(XSQHI-XSQLO).PLO
GO TO 228

C It is possible that due to numerical inaccuracy in the evaluation
C of XSQ. that XSQ>XSOHI. This would normally ~only occur if P1 is
C very close to PHI. Hence PHI is set to P1, XSOHI to XSQ and
C P1 to .1ePLO..SePHI

168 IF(XSQ.LT.XSQHI)GO TO 178
XS2HI -XSQ
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IER-I
RETURN

10 IF(NKT1.GE.NKT,-TAX8(8,K-2*JOER) )GO TO 28
IER-2
RETURN

20 IF((lIWK.GE.NT).ANO.(IWK.GE.K**2)) O TO 38
IER-3
RETURN

C The matrices P and R are calculated in
C SETUPP and SETUPR respectively.

38 IF(IER.EQ.O)GO TO 40
CALL SETUPP(NPT.E,JDERT,NKT1,N,K.LJTI,R(1.1,3),WKWK(1.2).

WK (1.3) LJI((1, 4),R)

C The array WK(.,l) is determined so that LWK(.,l) approximates Y.
C This is necessary for accurate calculation of XSQ.

48 IER-S
00 88 1-1,N-1

OYSO=8.
DO So J-1,K-1

so OYSQ-DYSQ+T (I+J)
OYSQ-OYSQ/FLOAT (K-i)
CALL INTERV (X,NPT,DYSQ,LEFT,fIFLAG)
IF (MFLAG.EQ. 1)LEFT-NPT-1
OYSQ- (DYSO-X (LEFT) ) /(X (LEFT+1) -X (LEFT))

so WK(I,l)-Y(LEFT)*(l.-OYSQ)+Y(LEFT+1)*DYSQ
WK (N, 1) -V(NPT)
CALL SETUPR(NKT,T,N,K,NPT,X,Y,E,YSQ,R(1,1,2) ,I.K,WK(1,2),WK(1,3))

C An iteration is begun which changes P1 until XSQ is within
C .laeS Of S

P1.1.
XSQLO-e. 8
XSQH18.8
D0 220 IT-1,38

DO 78 I-l,K
00 78 J-1,N-I~i

78 R(IJ,1)-P1EcR(I.J,3)+R(I,J,2)

C The equation R*BCOEF-VCT is solved by first finding the
C Cholesky factorization of R, then by solving for BCOEF.

CALL BCHFAC(R,K,N,WK(1,4))
00 88 1-1,N

88 BCOEF(I)-WK(1.2)
CALL BCHSLV (R,K,N,BCOEF)

C The chi-square of the solution is determined.

DO 98 1-1,N
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C over this region. These weights are relative: i.e. C
C changing all the WTI by a constant factor will not C
C affect the resulting spline. C
C IER = 0 , If JOER,T,WTI and the first N*K elements of R are C
C as on the previous call to BSMTH ( this means C
C that the matrix P need not be recalculated ) C
C = 1 , if P is to be recalculated C
C C
C VIA COMMON / PLIMS / : C
C C
C PMIN = Min. allowed value of P1 ( See comment describing C
C iteration for correct chi-square ).Default is 1.8E-83 C
C PMAX - Max. allowed value of P1. Default is 1.8E+03. C
C C
C OUTPUT: C
C C
C IER - 0 , Calculation has been successful C
C = 1 If JOER > K-1 C
C = 2 , If NKT1 < N+K+max(8,K-2*JDER) C
C - 3 , If IWK < max(NKT1,K**2) C
C - 4 , If more than 38 iterations are required to find the C
C correct value for P. Indicates numerical difficul- C
C ties in the solution of the linear sustem C
C - 5 , If the chi-equare of the spline > 1.1*S C
C = , If the chi-square of the spline < .*S5 C
C BCOEF : An array of length N containing the B-epline coeffi- C
C cients of the spline. C
C C
C VIA COMMON / CHISO / : C
C C
C XSO - the chi-square of the spline C
C C
C WORK SPACE: C
C C
C R : An array of length 3*K*N C
C IWK - max(NKTI.Kk**2) C
C WK : An array of length 4*IWK C
C C
C ------------------------------------------------------------------- C

REAL BCOEF(N),T(NKT1),JTI(N),R(KN,3),WK(IWK,4),
* X(NPT),Y(NPT),E(NPT),
* PI,P2,PHI,PLO,XSO,XSOHI,XSQLO.YSO,ALF,DYSQ.S

INTEGER N,K,NKT,NKT1,JDER,NPTMFLAG,LEFTIWK,IER,ITI,J

COMMON / CHISO / XSQ,DUM(3)

COMMON / PLIMS / PMIN,PMAX

DATA PMIN / 1.8E-83 /.PMAX / 1.8E+83/

C The input data is checked for simple errors

NKT=N+K
IF(JDER.LT.K)GO TO 18
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B.2 BSMTH

SUBROUTINE BSMTH(S,JDER,NPT,X.Y,EN,K,NKT,T,WTI,BCOEF,
* R,IWK,WK,IER)

C -------------------------------------------------------------------- C
C C
C BSMTH calculates the spline of order K, with knots T(I),I-1,NKT C
C which has chi-square of S with respect to the data points C
C X(I),Y(I),I-1,NPT, and which has as small a JDER-th derivative C
C as possible. C
C C
C AUTHOR: David Hally , hay 1981 C
C C
C USAGE: C
C EXECUTE mainpgmBSPLIN:HLLYSP/LIB,BSPLIN:BSPLIN/LIB C
C C
C CALLS SETUPQSETUPR,XSQC C
C from BSPLIN library: INTERV,BCHFAC,BCHSLV C
C C
C INPUT: C
C C
C S : The chi-square of the spline with respect to the data C
C will be within 18% of S, if possible. As S is C
C increased the spline becomes smoother but farther C
C from the data points. Function PRERR can be used C
C to give a value for S if a reasonable value is not C
C known. C
C JOER : The integral of the square of the JDER-th derivative C
C of the spline is minimized ( subject to the con- C
C straint that XSQ-S). If smooth curves are desired C
C a value of JDER-2 is appropriate. JOER should be C
C non-negative and less than K. C
C NPT : The no. of data points C
C X : An array of length NPT containing the data point C
C abscissae in ascending order. C
C Y : An array of length NPT containing the data point C
C ordinates. C
C E : The errors of the data points. The smaller C
C the error the closer the spline will come C
C to that point. C
C N : The no. of B-splines. C
C K : The order of the spline. C
C NKT1 = N+K+max(O,K-2*JDER) C
C T : An array of length NKT1 the first N+K elements of C
C which contain the knot sequence (in ascending order). C
C the remaining array elements are used in subroutine C
C SETUPP. C
C WTI : An array of length N of which only the first N-K+i C
C elements are used (rather than passing in an other- C
C wise superfluous argument). LTI(I) is a weight C
C for the integral of the square of the JDER-th deriv- C
C ative of the spline between T(I+K-1) and T(I+K). The C
C larger WTI(I) is the smaller the integral will be C
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IMAX-5
JOER-2
00 40 =.1,N+K

48 T(1)-FLOAT(I-K)/FLOAT(NWTI)

C The error in the X-values are found by calling the function
C PRERR and the integral weights, WTI, by calling WTIBEG.
C They are splined using BSMTH using fractional arc length
C to parametrize the data points. Similarly for the Y-values.

C NOTE: The parameter SM to be used in BSMTH should be
C expected to be NPT*PRERR**2.
C However. due to the sensitivity'of parametric splines to
C data error, it has been found that slightly higher values of
C SM sometimes give better results. SMFACT has been included as
C a knob to increase (or decrease) SM : SM=SMFACT*NPT*PRERR*c*2
C default value for SMFACT is 1.0.

158 IER-1
CALL WTIBEG(NPT,ARCL,X,N+K,TNWTI,WTI)
SX-SMFACT*PRERR(NPT,ARCL,X,E, IMAX,G,WK,8)**2*FLOAT(NPT)
CALL BSMTH(SX,JDER,NPT,ARCL,X,EN,K,NKT1,T,WTI,BCDEFX,

R,IWK,WK,IER)
XSQX-XSay
IF((IER.NE.0).AND.(IER.LT.4))RETURN
IER-i
SY.SMFACT*PRERR(NPT.ARCL,YE, IMAX,G,WK,1)**2*FLOAT(NPT)
CALL WTIBEG(NPT,ARCL,Y,N+,T.NWTI,WTI)
CALL BSMTH(SY,JDER,NPTARCL,Y,E,NK,NKT1,T,WTIBCOEFY,

RIWK,WKIER)
RETURN
END

I
. ... .. . . . .... .. - L L " 7*
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C BCOEFY = Array of length N containing the B-spline coefs. for C
C the Y-values of the curve C
C ARCL(I) = Arc length at the I-th data point/total length of curve C
C C
C VIA COMMON / CHISQ / C
C C
C XSQX = Chi-square of the spline of the abscissae C
C XSQY - Chi-square of the spline of the ordinates C
C SX - Required Chi-square of the abscissae ( as determined by C
C PRERR ) C
C SY = Required Chi-square of the ordinates C as determined by C
C PRERR ) C
C C
C VIA COMMON /CRVLTH/ C
C C
C SNEWL The total arc length of the curve C
C C
C WORK SPACE C
C C
C R An array of length 3*K*N C
C IWK - max(NKTiKic2) C
C WK An array of length 4*IWK C
C G An array of dimensions NPT,IMAX (used by PRERR) C
C WTI Array of length N used for the integral weights for C
C BSMTH C
C C
C ------------------------------------------------------------------- C

REAL X(NPT) ,Y(NPT) .E(NPT) ,ARCL(NPT) ,BCOEFY(N) ,BCOEFX(N),
T(NKT1),WTI(N),G(NPT,IMAX),WK(IWK,4),R(K,N,3),
SMFACT

INTEGER NPTNK.NKT1,NWTIIWK,IER,IMAX,IKI,IW,ID

COMMON /NODFLT/ SMFACTIMAX
COMMON /INTEXP/ JOER
COMMON /CHISD/ XSQY,XSOX,SY,SX

NWTI-N-K+1

C ARCL(I),I-1,N is initialized by connecting the data points with
C straight lines.

ARCL(1)-8.8
00 10 1-2,NPT

18 ARCL(1)-ARCL(I-I)+SQRT((X(1)-X(I-1))**2+(Y(1)-Y(I-1))*|*|2}

OLDL-ARCL(NPT)
DO 20 I-2,NPT

20 ARCL(I)-ARCL(I)/OLDL

C If IER.NE. non-default values of SMFACTIMAX and IMAX are
C taken from the COMMON block /NOOFLT/ and JOER from COMMON /INTEXP/

IF(IER.NE.8)GO TO 150
SMFACT-1.0
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C are calculated by calculating the coefs. of the knot sequence
C corresponding to the integral of each B-spline and then callIing
C BVALUE to evaluate these at the appropriate points.

IF(2*JOER.GE.K)GO TO 90
00 80 J-1,K

IKJ-I-K+J
WK(IKJ)-l.
IF(J.EQ.K)GO TO 60
00 48 L-IKJ+l,I+l

48 WK(L)=8.O
so 00 70 r-1,K-2*JOER

KM-K41-1
00 98 L-IKJ,I+1

WK(L)lWK (L)*(T(L+KM)-T(L) )/FLOAT(Kl)

68 CONTINUE
Al (J,M)-BVALUE(T,L4K,N,K+l,T2,O)

70 A(J,T1)-BVALUE(T,W.K,N,K+rl,Tl,O)
80 WK(IKJ)-O.O

C The elements of P are determined by integration by parts.

9e 00 138 L-1,K
00 138 J-1,1L

Lii -L-J+l
I KJ-I -K+J
HI-H
IF(MMAX.LT.l)GO TO 118
00 100 M1l,MMIAX

P(LJ1,IKJ)-P(LJ1,IKJ)+HI*W.TI(I1)*(DB1(L.J0ER-M+1)*
* 081 (J,JOER+Ms-1-(L,JOEP-rl-4.D[OB(,JER+l))

108 HI--HI
118 IF(K.LE.2*JDER)G0 TO 138

00 128 M.1,K-2*JDER
P(LJ1,IKJ)-P(LJ1,IKJ)+HI*l4TI(Il)*(A1(L,M)*OBI(J,JOER

* *~~~4MAX+r)-A(L,M)*DcBuJOJER+MAX-f)f
128 HI--HI
138 CONTINUE
148 CONTINUE

RETURN
END
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B.7 SETUPR

SUBROUTINE SETUPR (NKT,T,N,K,NPT,X, Y.E, YSQ, , Y1,VCT,VCT1)
C -------------------------------------------------------------C
C C
C The matrix R,the arrays Y1,VCT and VCT1, and the number YSQ are C
C calculated C
C ( SETUPR is based closely on L2APPR by Carl de Boor,in C
C A Practical Guide to Splines, p. 2SS) C
C C
C AUTHOR: David Hally , May. 1981 C
C C
C CALLED BY BSMTH C
C C
C CALLS from BSPLIN library BSPLVB C
C C
C --------------------------------------------------------------------C

REAL T(NKT),R(K,N),VCT(N),BIATX(20),X(NPT).Y(NPT),E(NPT),DW,
Y1 (N) , VCT1 (N) , YSQ, DYSQ

INTEGER N,K,NKT,NPT,LEFTLEFTMK,IJ,MM,JJ,LL
YSQ-0.
DO 28 J=1,N

VCT1 (J)-8.
VCT(J)-.
DO 10 1-1,K

R(I,J)-8.
10 CONTINUE
20 CONTINUE

C The LL-th data point is positioned within the knot sequence.

LEFT-K
LEFTMK-0
00 80 LL-1,NPT

30 IF(LEFT.EQ.N)GO TO 40
IF(X(LL).LT.T(LEFT+1))GO TO 40
LEFT-LEFT+1
LEFTMK=LEFTMK+1
GO TO 38

C R is calculated by calling BSPLVB to evaluate the B-splines at
C the data points.

48 CALL BSPLVB(T,K,1,X(LL),LEFT,BIATX)
DYSQ-Y (LL)
DO So MM-1,K

DYSQ-DYS-BIATX (MM).Y1 (LEFT-K+MM)
so CONTINUE

00 78 MM-1,K
DW-BIATX (MM)/E (LL) **2
J-LEFTMK+MM
VCT1 (J)-VCT1 (J)+DYSQ*OW
VCT (J) -DOJ*Y (LL) +VCT (J)



46 Appendix B

00 20 JJ-MlrlK
R(I ,J).BIATX(JJ)*L.WsR(I,J)
1.1+1

Go CONTINUE
70 CONTINUE

YSO- (OYSQ/E (LLi))**2+YSQ
82 CONTINUE

RETURN
END
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B.8 SMODAV

FUNCTION SM1ODAV CNPT,X)
C----------------------------------------------------------------- C
C C
C SMOOAV returns a modal average of the numbers in X C
C C
C AUTHOR :David Hally , Aug. 1981 C
C C
C USAGE C
C EXECUTE main-pgm,BSPLIN:HLLYSP/LIB C
C C
C INPUT C
C C
C NPT *No. of values to be averaged C
C X -Array of length NPT containing values to be averaged C
C C
C RETURNS: C
C C
C SMODAV - Modal average of the values in X C
C C
C ---------------------------------------------------------------- C

REAL X(NPT) ,XBOX (11),SUMBOX (18) ,XTIN,XrAXXRATIO,SCALE,S100AV
INTEGER IBOX(181 ,NPT,ISUM,NBGX,I,J

C The range of the values is found and broken into NBOX logarithmic
C intervals, such that the ratio of the smallest to the largest
C possible no. in each interval does not exceed NPT, but also
C subject to the constraint 2 < NBOX < 11.

XrIIN-1 .8E+30
XIAX-1.OE-30
00 10 I-1,NPT

IF(X(I).LE.8.8)GO TO 10
XMAX-AMAX1 (X (I) ,XMAX)
XMIN-AMIN1 (X(I) ,XMIN)

18 CONTINUE
IF(XIIN.EQ.1.BE+30)GO TO 910
XRATIO-Xr AX/XMIN
NBOX.ALOG1O (XRATI0) /ALOG10 (FLOAT (NPT))
NBOX-rIINSQ480X, 10,NPTIS)
NBOX-MAX0 (3. NBOX)
SCALE-XRAT IO** (1./NBOX)
XBOX (1) -XM IN
XBOX (NBOX+1) .XMAX

C The no. of X-values within each interval is calculated

D0 28 1-1,NBOX
SUMBOX (I) .0

20 IBOX(I)-0
00 30 1.2.NBOX

30 XBOX (I)-XBOX(I-1)*SCALE
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00 60 I-1,NPT
DO 40 J-2,NBDX+1

40 IF(X(I1).LE.XBOX(J))GO TO 58
50 SUMBOX (J-I) -SUMBOX (J-1 I+X (I)
60 IBOX(J-I)-IBOX(J-I)+l

C Denote by Xmid the X-value such that there are an equal no. of X-values
C both smaller and greater than Xmid. SMODAV is the average value of all
C the X's in the interval containing Xmid.

ISUM=-
DO 78 I*I,NBOX

ISUM-ISUM+IBDX(1)

IF(ISUM.GE.NPT/2)GO TO 80
70 CONTINUE
80 SMODAV-SUMBOX(1)/IBOX(1)

RETURN

98 SMODAV-0.8
RETURN
END
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B.9 WTIBEG

SUBROUTINE WTIBEG(NPT,X.Y,NKT,T,NWTI,WTI)
C -------------------------------------------------------------C
C C
C WTIBEG uses the data points to predict values for the integral C
C weights WTI for use in BSMTH. C
C C
C AUTHOR: David Hally , Aug. 1981 C
C C
C USAGE: C
C EXECUTE mainpgm,BSPLIN:HLLYSP/LIB C
C C
C INPUT: C
C C
C NPT - No. of data points C
C X - Array of length NPT containing data point abscissas C
C Y - Array of length NPT containing data point ordinates C
C NKT - No. of knots C
C T - Array of length NKT containing the knots C
C NWTI - No. of integral weights ( = no. of B-splines - C
C order of spline +1 ) C
C C
C OUTPUT: C
C C
C WTI = Array of length NWTI containing the integral weights C
C C
C -------------------------------------------------------------------- C

REAL X(NPT),Y(NPT),T(NKT},WTI (NTI),
* HL,HR,TL,TR,DIYL,D1YR,D2YDL.02YDRD2YTLD2YTR,
* SLOPE,WMIN,WMAX,WTIAV,DUMMY

INTEGER NPT,NWTI,NKT,K, ID, IT, IW

K-(NKT-NWTI+1)/2

C 1st and 2nd derivatives at the first two data points and at the
C end-points of the first knot interval are approximated by divided
C differences.

IT-K
TL-T (K)
ID-i
IW-1
WTI (1) -. 8
HL-X (2) -X (1)
HR=X (3) -X (2)
OYL-(Y(2)-Y(1) )/HL
OlYR- (Y (3) -Y (2))/HR
D2YDL- (Dl YR-D1YL) / (X (3) -X (1))
D2YDR-02YDL
D2YTL-D2YDL
SLOPE=0.8
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C The next interval of interest is the interval from the right end of
C the current interval to the next data point or the next knot,
C whichever occurs first. The contribution to WiTI from this interval
C is determined.

12 TR=AMIN1(T(IT+1iXUOD+lfl
02YTR-O2YOL+SLOPE*(TR-X (ID))
LI(IWl) -LTI (IL)+HL*(O2YTL*(02YTL+D2YTR) +D2YTR**2) /3.

IF(IT.EQ.NLITI+K-1)GO TO 58
TL..TR
D2YTL-D2YTR
IF(TR.NE.X(I0+1))GO TO 30
I 0-10+1
02YOL-02YDR
02 YL-D1 YR
HL-HR
IF(ID.GT.NPT-2)GO TO 28
HR-X(ID+2)-X(!D+l)
D1YR.(Y(ID+2)-Y(ID+l) )/HR
D2YOR (01 YR-Ol YL) /(HR+HL)

20 SLOPE- (D2YDR-02YOL) /HL
30 IF(TR.NE.T(!T+1))GO TO 18

IT-IT+1
ILI-ILJ+1
LI(!I)-O.8

40 IF(T(IT+1L.NE.T(IT))GO TO 18
IT-I T+2
IWL- IW+1
WI(Il) -0.0
GO TO 48

C The WTIi are normalized so that most of them are of order 1

so LJTIAV-St00AV (NWT! ,LTI)
IF(LITIAV.EQ.S.0)GO TO 78
Wt1IN-LTIAV*1.OE-03
WMAX=LJTIAV*1 . E+03
0O 68 ILI-1,NLTI

OUtIMY=UJTI (IL)
IF((LITI (IL).GT.WMIlN).AN0. WI W).LT.WMAX))JTI (IW)-
* LJWTIAV/LJTI(!LJ)

IF(DUtW1Y.GT.I4MAX)UJTI (IJ)-1.8E.-03
so IF(DUrW7Y.LE.WMIN)LITI (IW)-l.8E+03

RETURN
718 00 80 ILI-1,NUITI
80 WTI(IW)-1.0

RETURN
END



Appendix B 51

B.IO XSQC

FUNCTION XSQC(NK.BCOEF,R,VCT,WK.YSO)
C ---------------------------------------------------- C
C C
C XSQC calculates the chi-square: C
C XSQ- SUM( (Y(I)- SUM( (BCOEF(J)-Y1(J))*BJ(X(I)) ))**2 *E(I) ) C
C By subtracting YI from BCOEF one keeps the numbers fairly small C
C thus avoiding round-off error. C
C C
C AUTHOR: Oavid Hally , May. 1981 C
C C
C CALLED by BSMTH C
C C
C ------------------------------------------------------------------- C

REAL BCOEF(N),R(KN),VCT(N),WK(N),XSQC,YSO
INTEGER I.NKJIJ1

XSQC-YSQ
DO 18 I-1,N

18 XSQC=XSQC-2. *BCOEF (I) *VCT (I)
00 28 I-1.N

20 W4K(I)-8.9
DO 30 I=1,K

DO 30 J-1,N-I+1
IJ-I+J-1
WK(J)=WK(J)+R(I ,J)*BCOEF(IJ1)
IF(I.EQ.1)GO TO 38
WK(IJ1)-WK(IJ1)+R(I ,J)*BCOEF(J)

38 CONTINUE
00 48 I-1,N

48 XSQC-XSQC+WK (I )*BCOEF (I)
RETURN
END
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